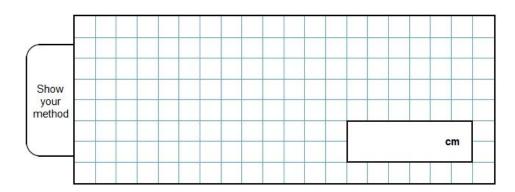
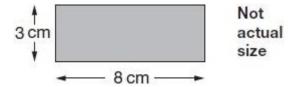
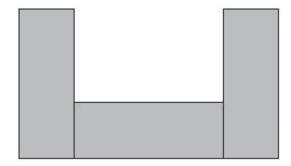

WAL: how to calculate the perimeter and area of compound shapes.


Q1.

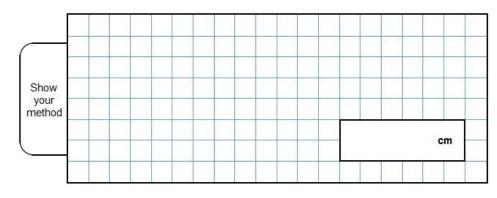
Not actual size

The perimeter of this rectangle is 50 centimetres.

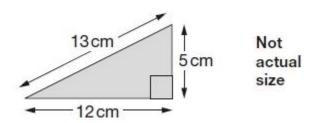

Calculate the length of the rectangle.

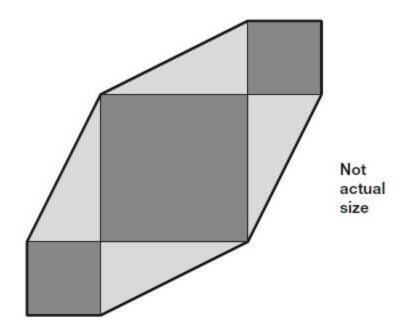

2 marks

Q2.

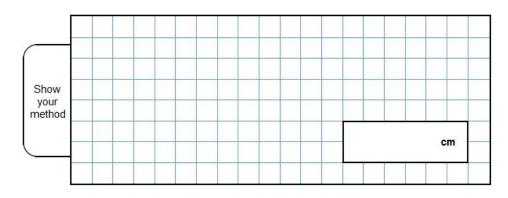

Alfie has some rectangles.

He makes this shape using three of the rectangles.


What is the **perimeter** of Alfie's shape?

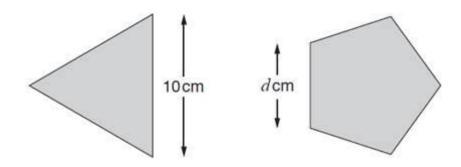

2 marks

Q3.


Chen has some right-angled triangular tiles.

He makes this shape with four of his triangular tiles and three square tiles.

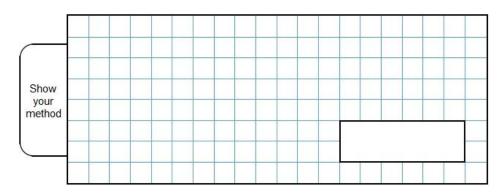
What is the **perimeter** of Chen's shape?



2 marks

Q4.

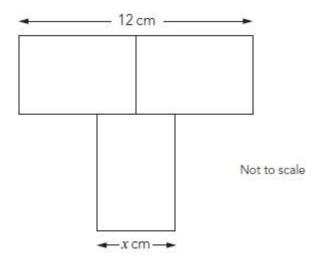
Here are an equilateral triangle and a regular pentagon.


Not actual size

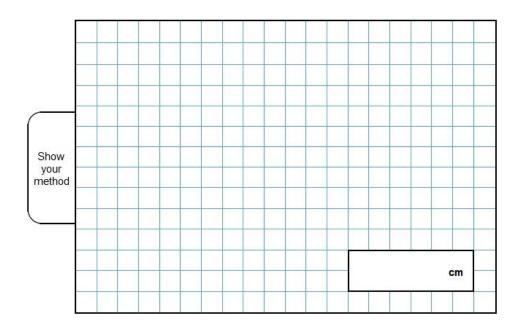
Each side of the triangle is 10 cm Each side of the pentagon is $d \ \mathrm{cm}$

The perimeter of the pentagon is 4 centimetres more than the perimeter of the triangle.

What number does d represent?



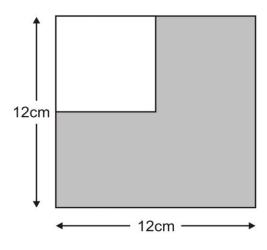
2 marks


Q5.

Here is a T-shape made from 3 identical rectangles.

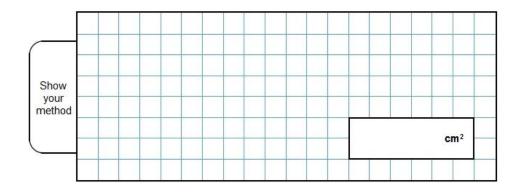
The area of the T-shape is 90 cm²

Work out the value of x



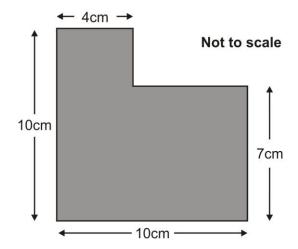
2 marks

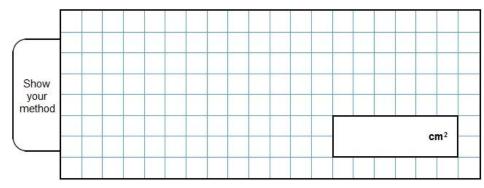
Q6.


A white square is painted in one corner of a grey square.

Each side of the white square is **half** the length of a side of the grey square.

actual size

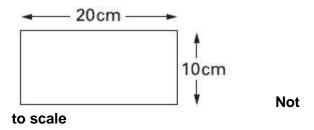

What is the **area** of the grey section?



Not

Q7.

What is the area of this shape?

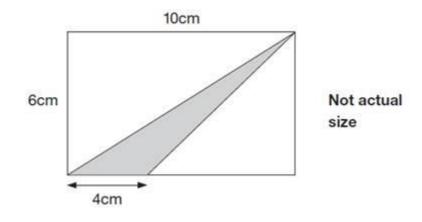


2 marks

Q8.

Rebecca has rectangular tiles like this.

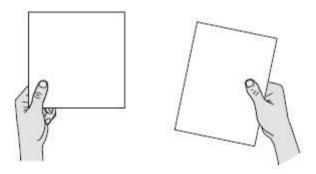
She makes a larger rectangle using 4 of the tiles.


What is the **area** of the larger rectangle?


1 mark

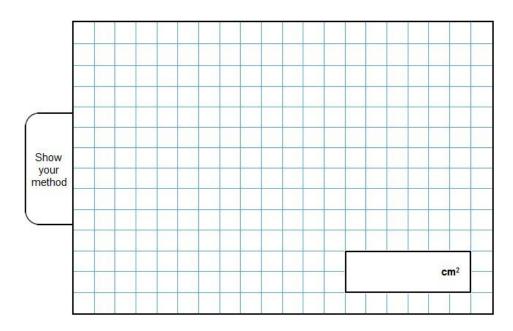
Q9.

The diagram shows a shaded triangle inside a rectangle.



What is the area of the shaded triangle?

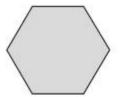
2 marks


Q10.

A square tile measures 20 cm by 20 cm.

A rectangular tile is 3 cm **longer** and 2 cm **narrower** than the square tile.

What is the **difference in area** between the two tiles?

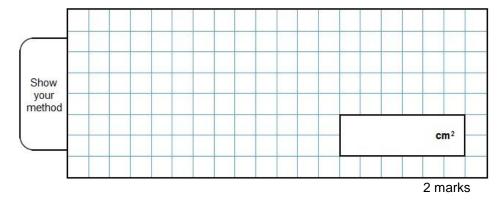


3 marks

Q11.

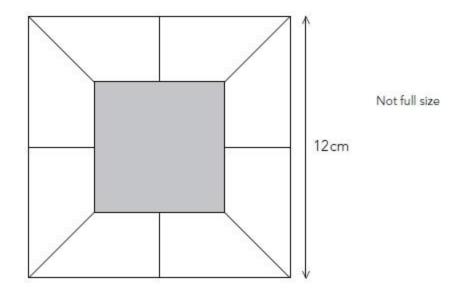
These two shapes have the **same** perimeter.

regular hexagon square

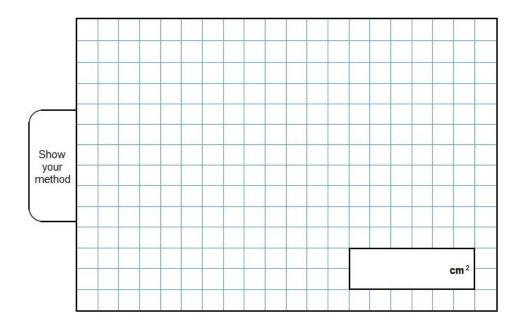


Not actual size

The length of each side of the **hexagon** is **8** centimetres.

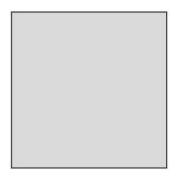

Calculate the area of the square.

Q12.


The diagram shows a square of side length 12 cm.

Inside the square are 8 congruent trapeziums and a shaded square.

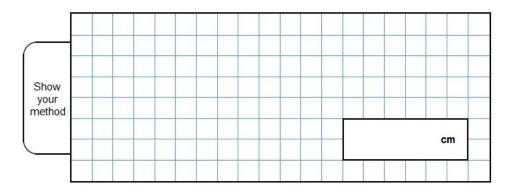
The **side length** of the shaded square is **6 cm**.


What is the area of one of the trapeziums?

3 marks

Q13.

The area of this square is 36 cm².



Not actual size

The square is cut into quarters to create 4 identical rectangles.

What is the **perimeter** of **one** of the small rectangles?

2 marks

Mark schemes

Q1.

Award TWO marks for the correct answer of 18

If the answer is incorrect, award ONE mark for evidence of appropriate working, eg

$$50 \div 2 = 25$$

25 - 7 = wrong answer

OR

$$7 \times 2 = 14$$

$$50 - 14 = 36$$

 $36 \div 2 = \text{wrong answer}$

Working must be carried through to reach an answer for the award of **ONE** mark.

Up to 2

[2]

Q2.

Award TWO marks for the correct answer of 54

If the answer is incorrect, award **ONE** mark for evidence of appropriate working, eg

$$8 \times 4 = 32$$

$$3 \times 4 = 12$$

$$5 \times 2 = 10$$

$$32 + 12 + 10 = wrong answer$$

Working must be carried through to reach an answer for the award of **ONE** mark.

Up to 2

[2]

Q3.

Award TWO marks for the correct answer of 72

If the answer is incorrect, award **ONE** mark for evidence of appropriate working, eg:

$$\blacksquare$$
 13 × 4 = 52

$$5 \times 4 = 20$$

$$52 + 20 = wrong answer$$

Working must be carried through to reach an answer for the award of **ONE** mark.

[2]

Q4.

6.8

Accept equivalent fractions and decimals, eg:

$$6\frac{4}{5}$$

2

or

Shows or implies a complete, correct method, eg:

•
$$5d = 3 \times 10 + 4$$

$$5d = 34$$

$$d = 34 \div 5$$

•
$$3 \times 10 = 40$$
 (error)

$$40 + 4 = 44$$

$$44 \div 5 = 8.4$$
 (error)

•
$$30 + 4 = 34$$

 $34 \div 5$

Do not accept incorrect methods, eg:

where the perimeter of the pentagon is treated as being 4cm less than the perimeter of the triangle:

•
$$30-4=26$$

$$26 \div 5 = 5.2$$

[2]

Q5.

5 cm

2 U1

1

or

Answer of 2.5

OR

Shows understanding of a correct method even if there are computational errors, eg

•
$$90 \div 3 = 36 \text{ (error)}$$

$$12 \div 2 = 6$$

$$36 \div 6 = 6$$

[2]

1

Q6.

Award TWO marks for the correct answer of 108

If the answer is incorrect, award ONE mark for evidence of appropriate method, eg

$$12 \times 12 = 144$$

 $\frac{3}{4}$ of 144

OR

$$(12 \times 12) - (6 \times 6)$$

OR

$$(12 \times 12) + (6 \times 6)$$

OR

$$(6 \times 6) \times 3$$

Answer need not be obtained for the award of **ONE** mark.

Up to 2 (U1)

[2]

Q7.

Award TWO marks for the correct answer of 82

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, eg

$$(4 \times 10) + (7 \times 6)$$

OR

$$(10 \times 10) - (3 \times 6)$$

Answer need not be obtained for the award of the mark.

Up to 2

[2]

Q8.

800

[1]

Q9.

12

2

Shows or implies a complete correct method, eg:

- $4 \times 6 \div 2 = 13$ (error)
- $60 (10 \times 6 \div 2) (6 \times 6 \div 2)$
- 60 48

[2]

1

Q10.

Award THREE marks for the correct answer of 14

If the answer is incorrect, award **TWO** marks for:

sight of 414 as evidence of 23 x 18 completed correctly

OR

evidence of an appropriate method with no more than one arithmetic error, e.g.

$$20 \times 20 = 400$$

$$400 - 314 = 86$$

Award **ONE** mark for evidence of an appropriate method.

Answer need not be obtained for the award of **ONE** mark.

A misread of a number may affect the award of marks. No marks are awarded if there is more than one misread or if the mathematics is simplified.

TWO marks will be awarded for an appropriate method using the misread number followed through correctly to a final answer.

ONE mark will be awarded for evidence of an appropriate method using the misread number followed through correctly with no more than one arithmetic error.

Up to 3m

[3]

Q11.

Award TWO marks for the correct answer of 144

If the answer is incorrect, award **ONE** mark for evidence of an appropriate method, e.g.

• $8 \times 6 = 48$ $48 \div 4 = 13 \text{ (error)}$ $13 \times 13 = 169$

OR

Award **ONE** mark for:

evidence for the side length of the square calculated correctly, i.e.
 12

Answer need not be obtained for the award of ONE mark.

Up to 2m

[2]

Q12.

 $13\frac{1}{2}$ or equivalent

3

or

Shows or implies a complete correct method with not more than one computational error

The most common correct methods:

Find the total area of the trapezia and divide by 8 eg

• $(12^2 - 6^2) \div 8$

Do not accept squaring evaluated as x 2

eg

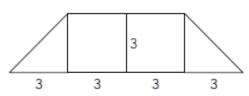
•
$$(12^2 - 6^2) \div 8 = (24 - 12) \div 8$$

Find the dimensions of a trapezium and use the formula or component parts eg

•
$$\frac{1}{2}(3+6) \times 3$$

•
$$4\frac{1}{2} \times 3$$

•
$$3 \times 3 + (3 \times 3) \div 2$$


or

The only error is to work with 4 congruent trapezia (not 8), but correctly finds the area of one of them

eg

•
$$(144 - 36) \div 4 = 27$$

•

$$3^2 = 9$$
, $9 \times 3 = 27$

Do not accept for 2m, 27 seen with no method

2

or

Shows or implies a correct method to find the total area of the trapezia

- $(12^2 6^2)$
- 144 36
- 108 seen

or

Show the parallel sides of the trapezium are 3(cm) and 6(cm), and the height is 3(cm) eg

Diagram marked correctly

! Brackets omitted For 1m, condone eg, accept

• $12^2 - 6^2 \div 8 = 139.5$

1 U1

[3]

Q13.

15

2

or

6(cm) and 1.5(cm) seen (the dimensions of the rectangle)

OR

Shows or implies a complete correct method, eg:

•
$$\sqrt{36} = 8 \text{ (error)}$$

 $8 \div 4 = 2$
 $2 \times (8 + 2)$

•
$$6 \times 6 = 36$$

 $6 \div 4 = 1.2 (error)$
 $6 + 1.2 + 6 + 1.2$

Do not accept confusion between area and perimeter, ie:

• side of square is $36 \div 4 = 9$ (error) $2 \times (9 + 2.25)$

1

[2]